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The solution of the problem of the expansion of a piston at constant
speed in an ideal gas was given by Sedov [1,2 ] and Taylor [3]. If the
speed of the piston is constant, the motion of the gas is self-similar,
including the counter-pressure (p, # 0); if the piston radius varies
with time according to &8 power law, the motion will be self-similar only
if the counter-pressure is not included. Self-similar motions of a gas,
produced by a piston moving according to a power law, were considered in
(4-8 1. The solution of a non-self-similar (p, # 0) linearized problem
of the expansion of a piston with apeed

— o™ (m—1) [TPANE , _
= {1+2(2m-—-1)( plc) At 2m_]

was given inf{9].

In the present paper, we consider the non-self-similar problem (p1 #
0) of the motion of a gas due to 8 piston moving with the speed v, = ct®
These motions may be considered as being created from a point explosion
with a diverging shock wave, or from a peripheral explosion, with con-
verging shock wave, taking the gas to be pushed by the products of the
explosion, It is assumed that the motion of the explosion products is
similar to the motion of a piston following a power law.

1. We shall consider the nonstationary motion of a gas produced by a
plane cylindrical or spherical piston, having an arbitrary motion. At
the initial instant the gas is at rest; its density py and pressure p,
are wniform. For the independent variables and the unknown functions we
shall take the dimensionless quantities

r a? v
h=g 4=%, =5, RMo=L, PRo=%
where a, is the speed of sound in the undisturbed gas, r, is the radius
of the shock wave, v,, p,, p, are, respectively, the speed, density and

pressure behind the shock front. In these variables the equations of
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motion of the disturbed gas have the form
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Here y is the adiabatic index, and

s=1In I('T'g (k = const, [k] = L") (1 4}

The values v = 1, 2, 3 correspond to plane, cylindrical and spherical
waves.,

Let the dimensionless piston coordinate and the dimensionless piston
velocity depend on q as follows:

Ay == E((]), /n [, ] == n (q) (15)

The condition that the velocity of particles next to the piston is
equal to the piston velocity is written as follows:
dg  eds 2, . ds
PR e A Ul e b (1.6)
If one of the three functions £(gq), n(q) or s(q) is known, then to
find the other two it is necessary to make use of Equations (1.5) and

(1.6). If the law for the piston expansion, r, = ¢(t), is given as a
function of time, Equation (1.6) takes the form

dr, , -
th= = ¢ (1) (1.7)

Using Equations (1.5) and (1.7), and the expression for the velocity
of the shock wave and the velocity of the fluid particles behind it, we

obtain

(1.8)
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If one of the four functions q(t), n(q), £(g), #(t) is given, the others
may be found from Equations (1.5) and (1.8). It should be noted that the
formulation of the problem imposes certain restrictions on these
functions.

The solution of the problem of a piston moving in an ideal gas accord-
ing to the law (1.5) reduces to the integration of the nonlinear system
of partial differential equations (1.1)-(1.3) in some region of the A, ¢
plane (with 0< ¢ 1), with the following conditions: at the shock wave

fL,9)=R(1,¢)=P(1,9)=1 for A=1 (1.9)
the condition (1.6) on the surface of the piston, with A = £(q), and
certain initial conditions at g = 0.

2. Let the piston move according to a power law
v, = ci™ (2.1)

We shall consider motions which are nearly self-similar, and represent
the functions s and r, in the form

1 1
s=In(4g) +2g+0(g), ra=1 (A [1+2q]+0@) @2
2 m41 1

where

vy = — 2T Aoz%(\@_ﬂ_”i)"‘_ﬂ e=[e®) T @3

A, is the dimensionless piston coordinate, determined in the solution of
the corresponding self-similar problem. A is a constant, unknown so far,
which is determined from the solution.

Using Equations (1.4) and (2.2), we find the relation

= [51 (L”l)
C P1

In view of (2.1)-(2.4), the expressions for the functions (1.5) take the
following form:
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The initial conditions for g = 0 may be written in the form
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O =/f(3), RMO=HR((1), P} 0) =P} (2.6)

where fo(A), Ry(A), Py(A) are functions corresponding to the self-similar
motion |?4—8] In place of the variables A and ¢ we introduce x and g,
with

A—A,—agq

ST TN g 2.7

We shall look for the functions f(x, ¢), R(x, q) and P(x, ¢q) in the form
1z, 9) = fol@) + a1 (@) + - .. 2.8)
R(z,q)=R(x) + qRy(@)+ ..., P(z,q)=Po(@)+qPi(2)+ ...

Neglecting terms of order g2 and higher, we obtain for f,(x), R,(x),
P,(x) and the constant A a linear system of differential equations (r.he
pnmes denote differentiation with respect to x).

a,R 0/1'+I::—1P1' + aafy + a4 by + Abyy =0

T+1
1+1R°f1 + a3y + agfy + as Ry + byy + Abyy =0 (2.9)
ay (RoPy — YPoRY) - agfr — Y01 Ro' Py + az Ry - byy - Abyy = 0
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The coefficients of this system are known functions of x, expressed
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in terms of fy(x), Ry(x), Py(z) and z; the functions f,(x), Ry(x) and
P,(x) are known from the solution of the self-similar problem. The con-
ditions at the shock wave have the form

LA =R,(1)=P,(1)=0 (2.19)

(since for the self-similar functions we have f,(1) = R (1) = Py (1) = 1),

Relations (2.5)-(2.8), together with the conditions on the piston for
the solution of the self-similar problem f, = 1/2(y + 1)A_, give the
boundary condition at points on the piston surface

(r+1A, (m—1)A4
hO =" 1 -T2 (2.12)

Thus, the problem reduces to the integration of the system of differen-

tial equations (2.9) on the interval 0 < x < 1, with the boundary condi-
tions (2,11) and (2.12). From the form of the equations and the boundary
conditions, it is clear that the solution of this problem may be sought

in the form[11]

fi=Fla+ Afis, Ri=Ry+ ARy, P,= Py, + AP,, (2.13)

Putting (2.13) in (2.9), we obtain two systems of differential equations,
which must be satisfied by the functions f,;, R,; and P, (i = 1, 2):

’ - i ’
ayRofyi” + %——‘_{_1 Py’ 4+ asfii +asRy + by =0
:{2'-%?”1" + alRtli‘{" acfzi + asﬁﬁ + bzi =0 (2'14)
a; (Ry Py’ — 7P Ry") + asfri — 10, R Py 4- ayRy + b5 = 0
The coefficients of Equations (2.14) are determined by Equations (2.10).

In view of (2.13), (2.11), (2.12), the boundary conditions for f,,,
Rli’ Ph- take the form

i) =Rs(1)=Py(1) =0 (2.15)
Fu @)+ At (@) = TEPR[1 tm= 4] (2.16)

Condition (2.16) is used to find the constant A after the functions fiir
Rli' Pli are fO\md.

3. We note that Equations (2.9) have an adiabatic integral, analogous
to that found in{9]



312 N.N. Kochina and N.S. Melnikova
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4. Near the piston, where x = 0, the solution of the self-similar
problem f,, R, and Py has singularities; therefore, for the integration
of Equations 22.9), it is necessary to make use of asymptotic formulas.
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FIG, 1.
We shall take m = — v/(2 + v); in this case, in the zV plane, where

z = a®t?/r?, V= vt/r, the field of the integral curves of Equation (1.4)
of [81], coincides with the field of the integral curves for a strong

explosion [ 1].

Depending on the parameters y and v appearing in Equation (1.4), three
cases are possible [8]:

1) for y < 2 the solution of the self-similar problem of the piston
coincides with the corresponding solution for the problem of a peripheral



On the motion of a piston in en ideal gas 313

explosion [5 1;

2) fory> 2, v=1lorv=2, and also for 2<y < 7, v = 3, a solu-
tion of the self-similar piston problem does not exist;

3) fory > 7, v = 3 the solution of the self-similar piston problem
coincides with the corresponding solution of the problem of a strong ex-
plosion.

It follows that the solutions of the self-similar piston problem for
the case m = = v/(2+ v) (v, = v) is described by Equations (11.15)-
(11.16), obtained by Sedov [1 1, where 4/(2+ v)(y + 1)KV 2/(2+ v).

If we introduce a new independent variable

2

and make use of the solution of Sedov [1], we find the asymptotic be-
havior of the functions f; (u), Ro(u), P,(u) in the neighborhood of u = 0:

. 2 X
fo= T_—zﬂ, R,=Cuv2, Py = Cour—2 (4.2)
2 12——v viy+1DHR—7) (141 2+ )02
SR et M DO S0 O

where aj, a,, a; are known functions of v andy [11].

Putting the expressions for the functions f,, Ry, P, and their deri-
vatives in the first two equations (2.14), and using the adiabatic inte-
gral (3.1), we obtain a system of two linear differential equations for
determining f,.(u) and R, () in the neighborhood of the piston (A = A
Integrating this system, taking into account the integral (3.1), we ob-

tain asymptotic representations for the functions f,.(u), R, (u) and
P, ():

2 . ~2 4—vy 3 4+
X 2 9y 2~ C,. =y 8 cYy,, ¥Yo2
= g2y =Y T ¥ oo Cos Y —2 b 1 —2
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Here

IP F. () dx
_\__
SR et —h) — +l/o()J

(1< 2) (4.4)

The functions F,(x) are determined from Equations (3.2), C, from
Equation (4.2), C3 . C“- are constants of integration.
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Making use of Equation (2.16) and the first of Equations (4.3), we
find the following expression for the constant A:
A= Ci4+2(y—1)Cm

= 45
sl G — 2 (y— 1) O (4.5)

Figures 1 and 2 give, for various ¢, the variation of the character~
istics of the motion, namely the velocity, density and pressure in air
(y = 1.4), between a cylindrical piston and an imploding shock wave.
Curves marked 1 describe self-similar motion (g = 0), curves 2, 3, 4
correspond to the values ¢ = 0.025, 0.050, 0.075.
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Fig. 2.

According to the hypothesis of plane cross-sections [ 11], this will
be the variation of the characteristics of the motion in the case of flow
at high but finite velocity over an axisymmetric body in a duct. The
form of the body is nearly parabolic (the self-similar problem for a
body of parabolic form r = cx%*% is considered in [51).

We note that the problem of the outward propagating shock wave, where
the piston expands according to a power law, is considered in [10].
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