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The solution of the problem of the expansion of a piston at constant 
speed in an ideal gas was given by Sedov [ 1.2 1 and Taylor E 3 1. If the 
speed of the piston is constant, the motion of the gas is self-similar, 

including the countex-pressure (pl f 0); if the piston radius varies 
with time according to a power law, tbe motion will be self-similar only 
ii the counter-pressure is not included. Self-similar motions of a gas, 

produced by a piston moving according to a power law, were considered in 
[4-8 1. The solution of a non-self-similar (pl f 0) linearised problem 
of the expansion of a piston with speed 

was given in C 9 1. 

In the present paper, we consider the non-self-similar problem (pl f 

0) of the motion of a gas due to a piston moving with the speed v,= ct? 

These motions may be considered as being created from a point explosion 
with a diverging shock wave. or from a peripheral explosion. with con- 
verging shock wave, taking the gas to be pushed by the products of the 
explosion. It is assumed that the motion of the explosion products is 
similar to the motion of a piston following a power law. 

1. We shall consider the nonstationary motion of a gas produced by a 
plane cylindrical or spherical piston, having an arbitrary motion. At 
the initial instant the gas is at rest: its density pk and pressure p1 
are uniform. For the independent variables and the unknown functions we 
shall take the dim&sionless quantities 

where al is the speed of sound in the undisturbed gas, r2 is the radius 
of the shock wave, v2, pz, pz are, respectively, the speed, density and 
pressure behind the shock front. In these variables the equations of 
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motion of the disturbed gas have the form 
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Here y is the adiabatic index, and 

s = Ink, (k = ronst, [k] = L-1) (1.4) 

‘lhe values u = 1, 2, 3 correspond to plane, cylindrical and spherical 

waves, 

Let the dimensionless piston coordinate and the dimensionless piston 

velocity depend on q as follows: 

A, =c 5 (q), fn IL sl = q(4) 

lhe condition that the velocity of particles next 

equal to the piston velocity is written as follows: 

(cl) 

to the piston is 

(1.6) 

If one of the three functions g(q), q(q) or s(q) is known, then to 

find the other two it is necessary to make use of Equations (1.5) and 

(1.6). If the law for the piston expansion, rn = $(t), is given as a 

function of time, Equation (1.6) takes the form 

(1.7) 

Using Equations (1.5) and (l-7), and the expression for the velocity 

of the shock wave and the velocity of the fluid particles behind it, we 

obtain 

(1.8) 
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If one of the four functions q(t), I)(Q), t(q), +(t) is given, the others 
may be found from Equations (1.5) and (1.8). It should be noted that the 
formulation of the problem imposes certain restrictions on these 
functions. 

The solution of the problem of a piston moving in an ideal gas accord- 
ing to the law (1.5) reduces to the integration of the nonlinear system 
of partial differential equations (l.l)-(1.3) in some region of the A, q 

plane (with O,< q< 11, with the following conditions: at the shock wave 

f(l,q)=R(l,q)=P(l,q)=l for h=l (1.9) 

the condition (1.6) on the surface of the piston, with X = t(q), and 
certain initial conditions at q = 0. 

2. Let the piston nave according to a power law 

v, = ctm 
(2.1) 

We shall consider motions which are nearly self-similar, and represent 
the functions s and r2 in the form 

s = ln (&q)k + < 4 + 0 (q”), r2 = $- kh+2)~ [ I+ $ q] + 0 W) (2.2) 
where 

2 m+1 1 

2m 
VI = 

-m+l’ 
& = f [(m -y y+1, 

-- 

k = [+L) 2 3” (2.3) 

h* is the dimensionless piston coordinate, determined in the solution of 
the corresponding self-similar problem. A is a constant, unknown so far, 
which is 

Using 

determined from the solution. 

Equations (1.4) and (2.21, we find the relation 

(2.4) 

In view of (2.1)-(2.41, the expressions for the functions (1.5) take the 
following form: 

h, = 5 ((I) = h* -; nq 
i 

‘a _ (In + 1) LA 

2 (2m - 1) ) 

fn = r(q) = y Ai. {i -I- [ I- $lJ),) 
AlqI 

(25) 

The initial conditions for q = 0 may be written in the fonn 
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f (A, 0) = to (VP R (A, 0) = 80 04, P (A, 0) == Po !A) (2.6) 

where f 
P 

(A), RotA), P,(A) are functions corresponding to the self-similar 

motion 4-8 1 . In place of the variables X and q we introduce x and q, 
with 

A-A.-aq 

x4= FAA,-aaq (2.7) 

We shall look for the functions f<z, q), R(x, q) and P(x, q) in -the form 

f(~tQ)=fo(z)jqjl(z)+... 

R(~,q)=R,(~)+fqRl(z)+..., P(2,q)=Po(s)+qP,(~)-t... 
(2.8) 

Neglecting tems of order q* and higher, we obtain for fl (XC), Rl(x), 

P,(x) and the constant A a linear system of differential equations (the 

primes denote differentiation with respect to n). 

~1~0~1’ + +q -1P,'+~dl+a2R1+bll+Ab12=0 

7& Rot,’ + RR,’ + dr + a,Rl+ bzl -I- 4, = 0 (2.9) 

a, (R,P,’ - yPo&‘) -I- asjl - 7a,Ro’P, -t a,R, + b,, -I- Ab,, = 0 

Here 

a,=T&~“-h.-(l-L*)s, a2 = 
I T& lo’ + *’ (* ; ‘*I ] R, 

Qs = QfO - 
!+(I - A*) 2 (v - 1) (I- A.) 4, 

2 fo, u* = - 
7 -+ 1 A, -1-z (1 -A*) +R,’ ] 

u5=vl(l--~*~+~l j,‘+ 
[ 

(~--1)(1--L) 

A. + z (1 - A.) joI 

a, = &) Fop, - ~Po&t’), 07 = - v1(1- A.) (7 + 1)h + Q” 

b,, = ra+4T--1 

21 (r + 1) 
PO’-- [+I to’ -t- v1(1 +]/oRo 

2v1(i - A.) % 

b2,=- T_-i - [h. + x(1 -A.)] R,’ (2.10) 

bs,,, = - T& (RoPo’ - 7P,,R;) lo + vI (I- h.) I472 - (y - ‘)‘] PoRo 
27 (7 - 1) 

brz = “I( i 2 A*) f*o + ~~~i’:;{~lo+h+I)(s-I)f,‘]Ro 

b 
22 

= (m+f)A. 
2 (2m - 1) { 

(VI + 1) (5 - 1) RD’ - (r _,_ ;Iyhr+lT/Z_ h.)lz} 

b 22=~#---*Po-f30+ 2(2m_q (m + ‘) ‘* {v,P&~ + (vl + 1)(x - 1) (RoPo’ --qP,R,,‘)} 

‘Ihe coefficients of this system are laxmu functions of x, expressed 
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in terms of fa(x), R,(x), P,(x) an z; the functions fa(x), R,(x) and d 
P,(x) are knom from the solution of the self-similar problem. 'Ibe con- 
ditions at the shock wave have the form 

~~(i)=~~(~~=~~(~)=o (2.11) 

(since for the self-similar functions we have fat11 = I$(11 = P,,il) = 1). 

Relations (2.5)-(2.81, together with the conditions on the piston for 
the solution of the self-similar problem f. = 1/2(y 
boundary condition at points on the piston surface 

Thus, the problem reduces to the integration of the 

+ 1)X *, give the 

(2.12) 

system of differen- 

tial equations (2.9) on the interval 0 < x < 1, with the boundary condi- 
tions (2.11) and (2,l22). From the form of the equations and the boundary 
conditions, it is clear that the solution of this problem may be sought 
in the form Cl 1 

f1= hi- Jvm 4 = JL+ J&a, p, = PII + API, (2.13) 

Putting (2.13) in (2.91, we obtain two systems of differential equations, 
which must be satisfied by the functions fli, RIi and PIi(i = 1, 2): 

d$fd t r+l ‘-‘P,i’.+a~~itU~~~ctb,t =O 

y$&h’ Jr 4’1~+ a4flt f a& + b = 0 (2.14) 

al(~&' -TP&i') tasfxi ---@C,'Pl~ +4~ 4-b =O 

The coefficients of bations (2.14) are determined by bations (2.10). 

k view of 
R xi* p,i take 

(2.131, (2.111, (2.121, the boundary conditions for fli, 
the form 

fii (1) = RiI: (1) = P,i (1) = 0 (2.P5) 

fn(O)-t Af12(0) =“+2i)h.[i-2;ym--;) A] (2.16) 

Condition (2.16) is used to find the constant A after the functions flil 

' ‘Ii Ii* are found. 

3. I& note that Equations (2.9) have an adiabatic integral, analogous 
to that found inE9I 
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Here 

(3.1) 

(3.2) 

F,(s)=[h*+z(l- q$gy__&-r)$+ v-y) 

p2 (II;) = - (” J$ R (m + 1) hL 
- 

0 

2 (2m _ 1) [ if (“l+ l) (x ; I) (1--h*)] - VI (1 - A.) 

d Near the piston, where n = 0, the solution of the self-similar 

problem fo, R and PO has singularities; therefore, for the integration 
of Equations l2.91, it is necessary to make use of asymptotic formulas. 

FIG. 1. 

We shall take m = - v/(2 + Y); in this case, in the ZV plane, where 

z = a*t*/r’, V = ut/r, the field of the integral curves of Equation (1.4) 

of[81, coincides with the field of the integral curves for a strong 
explosion 1 1 I . 

Depending on the parameters y and v appearing in Equation (1.4). three 

cases are possible [ 8 ] : 

1) for y < 2 the solution of the self-similar problem of the piston 

coincides with the corresponding solution for the problem of a peripheral 
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explosion IS I; 

2) for y > 2, v = 1 or v = 2, and also for 2 < y < 7, v = 3, a solu- 
tion of the self-similar piston problem does not exist; 

3) fory> 7,v= 3 the solution of the self-similar piston problem 
coincides with the corresponding solution of the problem of a strong ex- 
plosion. 

It follows that the solutions of the self-similar piston problem for 
the case R = - v/(2+ v) (vl = v) is described by Equations (ll.lS)- 
(11.161, obtained by Sedov I1 1 , where 4/(2 + v)Cy + 1) Q V< 2/(2 + v). 
If we introduce a new independent variable 

u=2-T/' 
2+v (4.1) 

and make use of the solution of Sedov [l] , we find the asymptotic be- 
havior of the functions fO(u), Rota), P,(u) in the neighborhood of u- 0: 

jO_7"lj 
2 ‘.) I?,=C,lL~~~ ) 

Y 

P, = C2UY-? (4.2) 

c 
3 

= t-f _;- 1)2 (2 + u)X.2 
8 (r - 1) Cl 

where as, a4, a5 are known functions of v andy 111. 

Putting the expressions for the functions f,,, R,, PO and their deri- 
vatives in the first two equations (2.141, and using the adiabatic inte- 
gral (3.1), we obtain a system of two linear differential equations for 
determining fli(u) and ',i(u) in the neighborhood of the piston (A = A*). 
Integrating this system, taking into account the integral (3.11, we ob- 
tain asymptotic representations for the functions fli(u), Rli(u) and 
P&d: 

7 (; -I- I)2 I*? czsi 

(r-1) 
(4.9 

Here 

Jp 

yli - \ --!- 
Fi (cc) dz 

; R,Y [Xh, + z (1 - A,) - y&fo (*)I’ (?’ < ‘) J 
(4.4) 

The functions Fi(x) are determined from Equations (3.21, C, from 
Equation (4.21, CSi, Chi are constants of integration. 
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Making use of Equation (2.16) and the first of Equations (4.31, we 
find the following expression for the constant A: 

(4.5) 

Figures 1 and 2 give, for various q, the variatiou of the character- 
istics of the motion, namely the velocity, density and pressure in air 
(y = 1.41, between a cylindrical piston and an imploding shock wave. 
Gwves marked 1 describe self-similar motion (q = 01, curves 2, 3, 4 
correspond to the values q = 0.025, O.Q50, 0.075. 

FIO. a. 

According to the hypothesis of plane cross-sections El1 I, this ail1 
be the variation of the characteristics of the motion in the case of flow 
at high but finite velocity over au axisyrsaetric body in a duct. lhe 
form of the body is nearly parabolic (the self-similar problem for a 
body of parabolic form F = cxoa5 is considered in [ 5 I). 

We note that the problem of the outward propagating shock wave, dmre 

the piston expands according to a power la& is considered in f 10 1 . 
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